[[Category theory MOC]] # Category of categories A **category of categories** is a [[category]] $\cat C$ such that any two objects $\cat A, \cat B \in \Ob \cat C$ are categories and the morphisms $\cat A \to \cat B$ are exactly the [[functor|functors]] $\cat A \to \cat B$. #m/def/cat A particular example is [[Category of small categories]]. ## Further terminology - [[Autistic category]] ## Properties - [[Russell's paradox for categories]] # --- #state/tidy | #lang/en | #SemBr