[[Category theory MOC]]
# Category of categories

A **category of categories** is a [[category]] $\cat C$ such that any two objects $\cat A, \cat B \in \Ob \cat C$ are categories
and the morphisms $\cat A \to \cat B$ are exactly the [[functor|functors]] $\cat A \to \cat B$. #m/def/cat
A particular example is [[Category of small categories]].


## Further terminology

- [[Autistic category]]

## Properties

- [[Russell's paradox for categories]]

#
---
#state/tidy | #lang/en | #SemBr